

N-Channel 80-V (D-S) MOSFET

Description

The device is using trench DMOS technology. This advanced technology has been especially tailored to minimize $R_{DS(ON)}$, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

The device meets the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

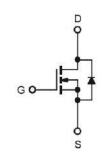
Features

- $R_{DS(ON)} = 7m\Omega @ V_{GS} = 10V$
- Super Low Gate Charge
- Excellent dv/dt Capability
- 100% EAS Guaranteed
- Green Device Available

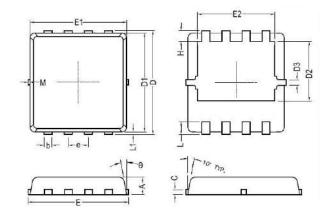
Typical Applications

- Networking
- Load Switch
- Synchronous Rectifier
- Quick Charger

Package type: PDFN 3.3X3.3

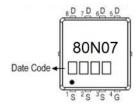

Packing & Order Information

3,000/Reel



RoHS Compliant

Graphic Symbol



Package Dimension

REF.	Millimeter		REF.	Millimeter				
	Min.	Nom.	Max.	KEF.	Min.	Nom.	Max.	
Α	0.70	0.75	0.80	E1	3.00	3.15	3.20	
b	0.25	0.30	0.35	E2	2.39	2.59		
С	0.10	0.15	0.25	е	0.65 BSC			
D	3.25	3.35	3.45	Н	0.30	0.39	0.50	
D1	3.00	3.10	3.20	L	0.30 0.40		0.50	
D2	1.78	1.88	1.98	L1	- 0.13		0.20	
D3	-	0.13	-	θ	- 10°		12°	
Е	3.20	3.30	3.40	М	-	-	0.15	

Marking

N-Channel 80-V (D-S) MOSFET

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

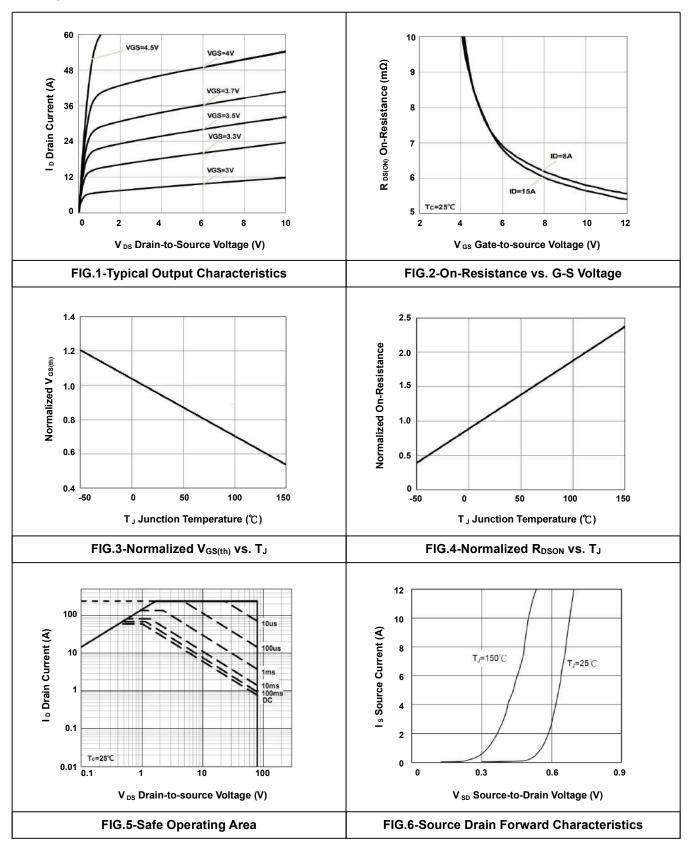
Absolute Maximum Ratings					
Symbol	Parameter	Value	Units		
V _{DS}	Drain-Source Voltage	80	V		
Vgs	Gate-Source Voltage	±20	V		
I _D	Continuous Drain Current¹ (Tc =25°C)	60	Α		
	Continuous Drain Current¹ (T _C =100°C)	38	A		
I _{DM}	Pulsed Drain Current ^{1,2}	240	Α		
I _{AS}	Single Pulse Avalanche Current, L =0.1mH ³	50	Α		
E _{AS}	Single Pulse Avalanche Energy, L =0.1mH³	125	mJ		
P _D	Power Dissipation ⁴ (T _C =25°C)	60	W		
T _J /T _{STG}	Operating Junction and Storage Temperature	-55 to 150	°C		

Thermal Resistance Ratings						
Symbol	Parameter	Maximum	Units			
$R_{\theta JA}$	Maximum Junction-to-Ambient ¹	62	°C/W			
Rejc	Maximum Junction-to-Case ¹	2.05	°C/W			

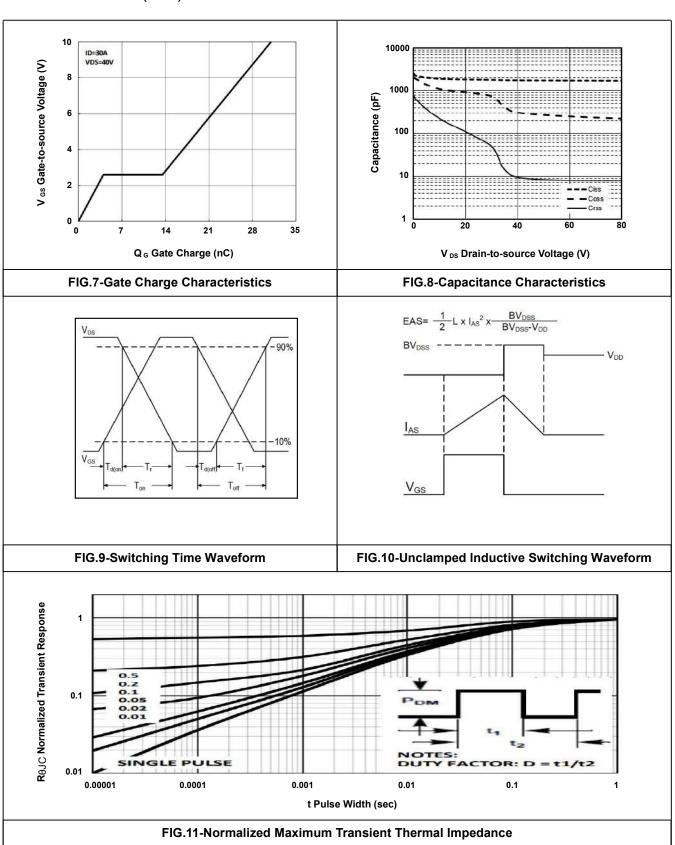
Electrical Characteristics (T _J =25°C unless otherwise specified)						
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{GS (th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250μA	1.2	1.6	2.5	V
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	80	-	-	V
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =80V, V _{GS} =0V, T _J =25°C V _{DS} =64V, V _{GS} =0V, T _J =55°C	-	-	1 10	μA
R _{DS} (on)	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =8A V _{GS} =4.5V, I _D =6A	-	5.8 8.6	7 11	mΩ
gfs	Forward Transconductance	V _{DS} =10V, I _D =3A	-	9	-	S
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =25V, L =0.1mH, I _{AS} =30A	45	-	-	mJ
V _{SD}	Diode Forward Voltage ²	I _S =1A, V _{GS} =0V, T _J =25°C	-	-	1.0	V
Is	Continuous Source Current ^{1,6}	V _G =V _D =0V, Force Current	-	-	60	
Ism	Pulsed Source Current ^{2,6}		-	-	120	Α

Notes

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.
- 3. The EAS data shows maximum rating. The test condition is V_{DD} =50V, V_{GS} =10V, L=0.1mH, I_{AS} =50A.
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.


N-Channel 80-V (D-S) MOSFET

Dynamic						
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Qg	Total Gate Charge ²	V _{DS} =40V		31		
Qgs	Gate-Source Charge	I _D =30A		4		nC
Qgd	Gate-Drain Charge	V _{GS} =10V		9.5		
t _{d(on)}	Turn-On Delay Time ²	V _{DS} =40V		22		
tr	Rise Time	I _D =30A		16		
td(off)	Turn-Off Delay Time	V _{GS} =10V R _G =6Ω		40		ns
t _f	Fall Time			31		
C _{ISS}	Input Capacitance	V _{DS} =40V V _{GS} =0V f =1.0MHz		1720		
Coss	Output Capacitance			350		pF
Crss	Reverse Transfer Capacitance			11		
trr	Reverse Recovery Time			40		nS
Qrr	Reverse Recovery Charge	IF=10A, dl/dt=100A/µs, Tj=25°C		55		nC
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f =1.0MHz		1.1		Ω


N-Channel 80-V (D-S) MOSFET

• Typical Electrical Characteristics

N-Channel 80-V (D-S) MOSFET

N-Channel 80-V (D-S) MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.